skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bastianoni, Alessia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present geochemical data from gas samples from ~1200 km of arc in the Central Volcanic Zone of the Andes (CVZA), the volcanic arc with the thickest (~70 km) continental crust globally. The primary goals of this study are to characterize and understand how magmatic gases interact with hydrothermal systems, assess the origins of the major gas species, and constrain gas emission rates. To this end, we use gas chemistry, isotope compositions of H, O, He, C, and S, and SO2 fluxes from the CVZA. Gas and isotope ratios (CO2/ST, CO2/CH4, H2O/ST, δ13C, δ34S, 3He/4He) vary dramatically as magmatic gases are progressively affected by hydrothermal processes, reflecting removal and crustal sequestration of reactive species (e.g., S) and addition of less reactive meteoric and crustal components (e.g., He). The observed variations are similar in magnitude to those expected during the magmatic reactivation of volcanoes with hydrothermal systems. Carbon and sulfur isotope compositions of the highest temperature emissions (97–408 ◦C) are typical of arc magmatic gases. Helium isotope compositions reach values similar to upper mantle in some volcanic gases indicating that transcustal magma systems are effective conduits for volatiles, even through very thick continental crust. However, He isotopes are highly sensitive to even low degrees of hydrothermal interaction and radiogenic overprinting. Previous work has significantly underestimated volatile fluxes from the CVZA; however, emission rates from this study also appear to be lower than typical arcs, which may be related to crustal thickness. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  2. Shallow-water hydrothermal vents are unique marine environments ubiquitous along the coast of volcanically active regions of the planet. In contrast to their deep-sea counterparts, primary production at shallow-water vents relies on both photoautotrophy and chemoautotrophy. Such processes are supported by a range of geochemical regimes driven by different geological settings. The Aeolian archipelago, located in the southern Tyrrhenian sea, is characterized by intense hydrothermal activity and harbors some of the best sampled shallow-water vents of the Mediterranean Sea. Despite this, the correlation between microbial diversity, geochemical regimes and geological settings of the different volcanic islands of the archipelago is largely unknown. Here, we report the microbial diversity associated with six distinct shallow-water hydrothermal vents of the Aeolian Islands using a combination of 16S rRNA amplicon sequencing along with physicochemical and geochemical measurements. Samples were collected from biofilms, fluids and sediments from shallow vents on the islands of Lipari, Panarea, Salina, and Vulcano. Two new shallow vent locations are described here for the first time. Our results show the presence of diverse microbial communities consistent in their composition with the local geochemical regimes. The shallow water vents of the Aeolian Islands harbor highly diverse microbial community and should be included in future conservation efforts. 
    more » « less